Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Recognizing Involuntary Actions from 3D Skeleton Data Using Body States (1708.06227v1)

Published 21 Aug 2017 in cs.CV

Abstract: Human action recognition has been one of the most active fields of research in computer vision for last years. Two dimensional action recognition methods are facing serious challenges such as occlusion and missing the third dimension of data. Development of depth sensors has made it feasible to track positions of human body joints over time. This paper proposes a novel method of action recognition which uses temporal 3D skeletal Kinect data. This method introduces the definition of body states and then every action is modeled as a sequence of these states. The learning stage uses Fisher Linear Discriminant Analysis (LDA) to construct discriminant feature space for discriminating the body states. Moreover, this paper suggests the use of the Mahalonobis distance as an appropriate distance metric for the classification of the states of involuntary actions. Hidden Markov Model (HMM) is then used to model the temporal transition between the body states in each action. According to the results, this method significantly outperforms other popular methods, with recognition rate of 88.64% for eight different actions and up to 96.18% for classifying fall actions.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.