Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ExSIS: Extended Sure Independence Screening for Ultrahigh-dimensional Linear Models (1708.06077v2)

Published 21 Aug 2017 in math.ST, cs.IT, math.IT, stat.ML, and stat.TH

Abstract: Statistical inference can be computationally prohibitive in ultrahigh-dimensional linear models. Correlation-based variable screening, in which one leverages marginal correlations for removal of irrelevant variables from the model prior to statistical inference, can be used to overcome this challenge. Prior works on correlation-based variable screening either impose statistical priors on the linear model or assume specific post-screening inference methods. This paper first extends the analysis of correlation-based variable screening to arbitrary linear models and post-screening inference techniques. In particular, (i) it shows that a condition---termed the screening condition---is sufficient for successful correlation-based screening of linear models, and (ii) it provides insights into the dependence of marginal correlation-based screening on different problem parameters. Numerical experiments confirm that these insights are not mere artifacts of analysis; rather, they are reflective of the challenges associated with marginal correlation-based variable screening. Second, the paper explicitly derives the screening condition for arbitrary (random or deterministic) linear models and, in the process, it establishes that---under appropriate conditions---it is possible to reduce the dimension of an ultrahigh-dimensional, arbitrary linear model to almost the sample size even when the number of active variables scales almost linearly with the sample size. Third, it specializes the screening condition to sub-Gaussian linear models and contrasts the final results to those existing in the literature. This specialization formally validates the claim that the main result of this paper generalizes existing ones on correlation-based screening.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.