Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

nuts-flow/ml: data pre-processing for deep learning (1708.06046v2)

Published 21 Aug 2017 in cs.LG and cs.SE

Abstract: Data preprocessing is a fundamental part of any machine learning application and frequently the most time-consuming aspect when developing a machine learning solution. Preprocessing for deep learning is characterized by pipelines that lazily load data and perform data transformation, augmentation, batching and logging. Many of these functions are common across applications but require different arrangements for training, testing or inference. Here we introduce a novel software framework named nuts-flow/ml that encapsulates common preprocessing operations as components, which can be flexibly arranged to rapidly construct efficient preprocessing pipelines for deep learning.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.