Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Large-Scale Domain Adaptation via Teacher-Student Learning (1708.05466v1)

Published 17 Aug 2017 in cs.CL

Abstract: High accuracy speech recognition requires a large amount of transcribed data for supervised training. In the absence of such data, domain adaptation of a well-trained acoustic model can be performed, but even here, high accuracy usually requires significant labeled data from the target domain. In this work, we propose an approach to domain adaptation that does not require transcriptions but instead uses a corpus of unlabeled parallel data, consisting of pairs of samples from the source domain of the well-trained model and the desired target domain. To perform adaptation, we employ teacher/student (T/S) learning, in which the posterior probabilities generated by the source-domain model can be used in lieu of labels to train the target-domain model. We evaluate the proposed approach in two scenarios, adapting a clean acoustic model to noisy speech and adapting an adults speech acoustic model to children speech. Significant improvements in accuracy are obtained, with reductions in word error rate of up to 44% over the original source model without the need for transcribed data in the target domain. Moreover, we show that increasing the amount of unlabeled data results in additional model robustness, which is particularly beneficial when using simulated training data in the target-domain.

Citations (134)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.