Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Adaptive Clustering Using Kernel Density Estimators (1708.05254v3)

Published 17 Aug 2017 in stat.ML and stat.ME

Abstract: We derive and analyze a generic, recursive algorithm for estimating all splits in a finite cluster tree as well as the corresponding clusters. We further investigate statistical properties of this generic clustering algorithm when it receives level set estimates from a kernel density estimator. In particular, we derive finite sample guarantees, consistency, rates of convergence, and an adaptive data-driven strategy for choosing the kernel bandwidth. For these results we do not need continuity assumptions on the density such as H\"{o}lder continuity, but only require intuitive geometric assumptions of non-parametric nature.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.