Adaptive Clustering Using Kernel Density Estimators (1708.05254v3)
Abstract: We derive and analyze a generic, recursive algorithm for estimating all splits in a finite cluster tree as well as the corresponding clusters. We further investigate statistical properties of this generic clustering algorithm when it receives level set estimates from a kernel density estimator. In particular, we derive finite sample guarantees, consistency, rates of convergence, and an adaptive data-driven strategy for choosing the kernel bandwidth. For these results we do not need continuity assumptions on the density such as H\"{o}lder continuity, but only require intuitive geometric assumptions of non-parametric nature.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.