Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Conditional Adversarial Network for Semantic Segmentation of Brain Tumor (1708.05227v1)

Published 17 Aug 2017 in cs.CV

Abstract: Automated medical image analysis has a significant value in diagnosis and treatment of lesions. Brain tumors segmentation has a special importance and difficulty due to the difference in appearances and shapes of the different tumor regions in magnetic resonance images. Additionally, the data sets are heterogeneous and usually limited in size in comparison with the computer vision problems. The recently proposed adversarial training has shown promising results in generative image modeling. In this paper, we propose a novel end-to-end trainable architecture for brain tumor semantic segmentation through conditional adversarial training. We exploit conditional Generative Adversarial Network (cGAN) and train a semantic segmentation Convolution Neural Network (CNN) along with an adversarial network that discriminates segmentation maps coming from the ground truth or from the segmentation network for BraTS 2017 segmentation task[15, 4, 2, 3]. We also propose an end-to-end trainable CNN for survival day prediction based on deep learning techniques for BraTS 2017 prediction task [15, 4, 2, 3]. The experimental results demonstrate the superior ability of the proposed approach for both tasks. The proposed model achieves on validation data a DICE score, Sensitivity and Specificity respectively 0.68, 0.99 and 0.98 for the whole tumor, regarding online judgment system.

Citations (116)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.