Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Online Primal-Dual Algorithms with Configuration Linear Programs (1708.04903v1)

Published 16 Aug 2017 in cs.DS and cs.DM

Abstract: Non-linear, especially convex, objective functions have been extensively studied in recent years in which approaches relies crucially on the convexity property of cost functions. In this paper, we present primal-dual approaches based on configuration linear programs to design competitive online algorithms for problems with arbitrarily-grown objective. This approach is particularly appropriate for non-linear (non-convex) objectives in online setting. We first present a simple greedy algorithm for a general cost-minimization problem. The competitive ratio of the algorithm is characterized by the mean of a notion, called smoothness, which is inspired by a similar concept in the context of algorithmic game theory. The algorithm gives optimal (up to a constant factor) competitive ratios while applying to different contexts such as network routing, vector scheduling, energy-efficient scheduling and non-convex facility location. Next, we consider the online $0-1$ covering problems with non-convex objective. Building upon the resilient ideas from the primal-dual framework with configuration LPs, we derive a competitive algorithm for these problems. Our result generalizes the online primal-dual algorithm developed recently by Azar et al. for convex objectives with monotone gradients to non-convex objectives. The competitive ratio is now characterized by a new concept, called local smoothness --- a notion inspired by the smoothness. Our algorithm yields tight competitive ratio for the objectives such as the sum of $\ell_{k}$-norms and gives competitive solutions for online problems of submodular minimization and some natural non-convex minimization under covering constraints.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube