Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Ultra-Fast Reactive Transport Simulations When Chemical Reactions Meet Machine Learning: Chemical Equilibrium (1708.04825v1)

Published 16 Aug 2017 in math.OC, physics.chem-ph, physics.flu-dyn, and stat.ML

Abstract: During reactive transport modeling, the computational cost associated with chemical reaction calculations is often 10-100 times higher than that of transport calculations. Most of these costs results from chemical equilibrium calculations that are performed at least once in every mesh cell and at every time step of the simulation. Calculating chemical equilibrium is an iterative process, where each iteration is in general so computationally expensive that even if every calculation converged in a single iteration, the resulting speedup would not be significant. Thus, rather than proposing a fast-converging numerical method for solving chemical equilibrium equations, we present a machine learning method that enables new equilibrium states to be quickly and accurately estimated, whenever a previous equilibrium calculation with similar input conditions has been performed. We demonstrate the use of this smart chemical equilibrium method in a reactive transport modeling example and show that, even at early simulation times, the majority of all equilibrium calculations are quickly predicted and, after some time steps, the machine-learning-accelerated chemical solver has been fully trained to rapidly perform all subsequent equilibrium calculations, resulting in speedups of almost two orders of magnitude. We remark that our new on-demand machine learning method can be applied to any case in which a massive number of sequential/parallel evaluations of a computationally expensive function $f$ needs to be done, $y=f(x)$. We remark, that, in contrast to traditional machine learning algorithms, our on-demand training approach does not require a statistics-based training phase before the actual simulation of interest commences. The introduced on-demand training scheme requires, however, the first-order derivatives $\partial f/\partial x$ for later smart predictions.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.