Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors (1708.04781v1)

Published 16 Aug 2017 in cs.LG and stat.ML

Abstract: Thompson sampling has impressive empirical performance for many multi-armed bandit problems. But current algorithms for Thompson sampling only work for the case of conjugate priors since these algorithms require to infer the posterior, which is often computationally intractable when the prior is not conjugate. In this paper, we propose a novel algorithm for Thompson sampling which only requires to draw samples from a tractable distribution, so our algorithm is efficient even when the prior is non-conjugate. To do this, we reformulate Thompson sampling as an optimization problem via the Gumbel-Max trick. After that we construct a set of random variables and our goal is to identify the one with highest mean. Finally, we solve it with techniques in best arm identification.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.