Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Modality-specific Cross-modal Similarity Measurement with Recurrent Attention Network (1708.04776v1)

Published 16 Aug 2017 in cs.CV, cs.CL, and cs.MM

Abstract: Nowadays, cross-modal retrieval plays an indispensable role to flexibly find information across different modalities of data. Effectively measuring the similarity between different modalities of data is the key of cross-modal retrieval. Different modalities such as image and text have imbalanced and complementary relationships, which contain unequal amount of information when describing the same semantics. For example, images often contain more details that cannot be demonstrated by textual descriptions and vice versa. Existing works based on Deep Neural Network (DNN) mostly construct one common space for different modalities to find the latent alignments between them, which lose their exclusive modality-specific characteristics. Different from the existing works, we propose modality-specific cross-modal similarity measurement (MCSM) approach by constructing independent semantic space for each modality, which adopts end-to-end framework to directly generate modality-specific cross-modal similarity without explicit common representation. For each semantic space, modality-specific characteristics within one modality are fully exploited by recurrent attention network, while the data of another modality is projected into this space with attention based joint embedding to utilize the learned attention weights for guiding the fine-grained cross-modal correlation learning, which can capture the imbalanced and complementary relationships between different modalities. Finally, the complementarity between the semantic spaces for different modalities is explored by adaptive fusion of the modality-specific cross-modal similarities to perform cross-modal retrieval. Experiments on the widely-used Wikipedia and Pascal Sentence datasets as well as our constructed large-scale XMediaNet dataset verify the effectiveness of our proposed approach, outperforming 9 state-of-the-art methods.

Citations (114)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube