Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Weight-based Fish School Search algorithm for Many-Objective Optimization (1708.04745v3)

Published 16 Aug 2017 in cs.NE

Abstract: Optimization problems with more than one objective consist in a very attractive topic for researchers due to its applicability in real-world situations. Over the years, the research effort in the Computational Intelligence field resulted in algorithms able to achieve good results by solving problems with more than one conflicting objective. However, these techniques do not exhibit the same performance as the number of objectives increases and become greater than 3. This paper proposes an adaptation of the metaheuristic Fish School Search to solve optimization problems with many objectives. This adaptation is based on the division of the candidate solutions in clusters that are specialized in solving a single-objective problem generated by the decomposition of the original problem. For this, we used concepts and ideas often employed by state-of-the-art algorithms, namely: (i) reference points and lines in the objectives space; (ii) clustering process; and (iii) the decomposition technique Penalty-based Boundary Intersection. The proposed algorithm was compared with two state-of-the-art bio-inspired algorithms. Moreover, a version of the proposed technique tailored to solve multi-modal problems was also presented. The experiments executed have shown that the performance obtained by both versions is competitive with state-of-the-art results.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.