Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Derandomization Beyond Connectivity: Undirected Laplacian Systems in Nearly Logarithmic Space (1708.04634v1)

Published 15 Aug 2017 in cs.CC

Abstract: We give a deterministic $\tilde{O}(\log n)$-space algorithm for approximately solving linear systems given by Laplacians of undirected graphs, and consequently also approximating hitting times, commute times, and escape probabilities for undirected graphs. Previously, such systems were known to be solvable by randomized algorithms using $O(\log n)$ space (Doron, Le Gall, and Ta-Shma, 2017) and hence by deterministic algorithms using $O(\log{3/2} n)$ space (Saks and Zhou, FOCS 1995 and JCSS 1999). Our algorithm combines ideas from time-efficient Laplacian solvers (Spielman and Teng, STOC 04; Peng and Spielman, STOC14) with ideas used to show that Undirected S-T Connectivity is in deterministic logspace (Reingold, STOC 05 and JACM08; Rozenman and Vadhan, RANDOM `05).

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.