Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Information flow reveals prediction limits in online social activity (1708.04575v2)

Published 15 Aug 2017 in physics.soc-ph and cs.SI

Abstract: Modern society depends on the flow of information over online social networks, and users of popular platforms generate significant behavioral data about themselves and their social ties. However, it remains unclear what fundamental limits exist when using these data to predict the activities and interests of individuals, and to what accuracy such predictions can be made using an individual's social ties. Here we show that 95% of the potential predictive accuracy for an individual is achievable using their social ties only, without requiring that individual's data. We use information theoretic tools to estimate the predictive information within the writings of Twitter users, providing an upper bound on the available predictive information that holds for any predictive or machine learning methods. As few as 8-9 of an individual's contacts are sufficient to obtain predictability comparable to that of the individual alone. Distinct temporal and social effects are visible by measuring information flow along social ties, allowing us to better study the dynamics of online activity. Our results have distinct privacy implications: information is so strongly embedded in a social network that in principle one can profile an individual from their available social ties even when the individual forgoes the platform completely.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.