Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Image Augmentation using Radial Transform for Training Deep Neural Networks (1708.04347v4)

Published 14 Aug 2017 in cs.CV

Abstract: Deep learning models have a large number of free parameters that must be estimated by efficient training of the models on a large number of training data samples to increase their generalization performance. In real-world applications, the data available to train these networks is often limited or imbalanced. We propose a sampling method based on the radial transform in a polar coordinate system for image augmentation to facilitate the training of deep learning models from limited source data. This pixel-wise transform provides representations of the original image in the polar coordinate system by generating a new image from each pixel. This technique can generate radial transformed images up to the number of pixels in the original image to increase the diversity of poorly represented image classes. Our experiments show improved generalization performance in training deep convolutional neural networks with radial transformed images.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.