Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sensitivity analysis of Burgers' equation with shocks (1708.04332v4)

Published 14 Aug 2017 in math.NA and cs.NA

Abstract: Generalized polynomial chaos (gPC) method has been extensively used in uncertainty quantification problems where equations contain random variables. For gPC to achieve high accuracy, PDE solutions need to have high regularity in the random space, but this is what hyperbolic type problems cannot provide. We provide a counter-argument in this paper, and show that even though the solution profile develops singularities in the random space, which destroys the spectral accuracy of gPC, the physical quantities (such as the shock emergence time, the shock location, and the shock strength) are all smooth functions of the uncertainties coming from both initial data and the wave speed: with proper shifting, the solution's polynomial interpolation approximates the real solution accurately, and the error decays as the order of the polynomial increases. Therefore this work provides a new perspective to "quantify uncertainties" and significantly improves the accuracy of the gPC method with a slight reformulation. We use the Burgers' equation as an example for the thorough analysis, and the analysis could be extended to general conservation laws with convex fluxes.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.