Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sensitivity analysis of Burgers' equation with shocks (1708.04332v4)

Published 14 Aug 2017 in math.NA and cs.NA

Abstract: Generalized polynomial chaos (gPC) method has been extensively used in uncertainty quantification problems where equations contain random variables. For gPC to achieve high accuracy, PDE solutions need to have high regularity in the random space, but this is what hyperbolic type problems cannot provide. We provide a counter-argument in this paper, and show that even though the solution profile develops singularities in the random space, which destroys the spectral accuracy of gPC, the physical quantities (such as the shock emergence time, the shock location, and the shock strength) are all smooth functions of the uncertainties coming from both initial data and the wave speed: with proper shifting, the solution's polynomial interpolation approximates the real solution accurately, and the error decays as the order of the polynomial increases. Therefore this work provides a new perspective to "quantify uncertainties" and significantly improves the accuracy of the gPC method with a slight reformulation. We use the Burgers' equation as an example for the thorough analysis, and the analysis could be extended to general conservation laws with convex fluxes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.