Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Training Support Vector Machines using Coresets (1708.03835v2)

Published 13 Aug 2017 in cs.DS and cs.LG

Abstract: We present a novel coreset construction algorithm for solving classification tasks using Support Vector Machines (SVMs) in a computationally efficient manner. A coreset is a weighted subset of the original data points that provably approximates the original set. We show that coresets of size polylogarithmic in $n$ and polynomial in $d$ exist for a set of $n$ input points with $d$ features and present an $(\epsilon,\delta)$-FPRAS for constructing coresets for scalable SVM training. Our method leverages the insight that data points are often redundant and uses an importance sampling scheme based on the sensitivity of each data point to construct coresets efficiently. We evaluate the performance of our algorithm in accelerating SVM training against real-world data sets and compare our algorithm to state-of-the-art coreset approaches. Our empirical results show that our approach outperforms a state-of-the-art coreset approach and uniform sampling in enabling computational speedups while achieving low approximation error.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.