Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generalized Graph Pattern Matching (1708.03734v1)

Published 12 Aug 2017 in cs.DB

Abstract: Most of the machine learning algorithms are limited to learn from flat data: a recordset with prefixed structure. When learning from a record, these types of algorithms don't take into account other objects even though they are directly connected to it and can provide valuable information for the learning task. In this paper we present the concept of Generalized Graph Query, a query tool over graphs or multi-relational data structures. They are built using the same graph structure as generalized graphs and allow to express powerful relational and non-relational restrictions on this type of data. Also, this paper shows mechanisms to build this kind of queries dynamically and how they can be used to perform bottom-up discovery processes through machine laerning techniques. ----- La mayor\'ia de los algoritmos que aprenden a partir de datos est\'an limitados ya que s\'olo son capaces de aprender a partir de datos estructurados en forma de tabla en la que cada fila representa un registro y cada columna una propiedad asociada. Estos algoritmos, no tienen en cuenta los atributos de las estructuras con las que un registro dado puede estar relacionado, a pesar de que \'estos pueden aportar informaci\'on \'util a la hora de llevar a cabo la tarea de aprendizaje. En este art\'iculo presentamos el concepto de Generalized Graph Query, una herramienta de consulta de patrones en grafos generalizados. Dicha herramienta ha sido construida utilizando la estructura de Grafo Generalizado y permite expresar restricciones relacionales y no relacionales sobre este tipo de estructuras. Adem\'as, en este art\'iculo se presentan mecanismos para la construcci\'on autom\'atica de este tipo de consultas y se muestra c\'omo \'estas pueden ser utilizadas en procesos de descubrimiento tipo bottom-up a trav\'es de t\'ecnicas relacionadas con el Aprendizaje Autom\'atico.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube