Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Video Deblurring via Semantic Segmentation and Pixel-Wise Non-Linear Kernel (1708.03423v1)

Published 11 Aug 2017 in cs.CV

Abstract: Video deblurring is a challenging problem as the blur is complex and usually caused by the combination of camera shakes, object motions, and depth variations. Optical flow can be used for kernel estimation since it predicts motion trajectories. However, the estimates are often inaccurate in complex scenes at object boundaries, which are crucial in kernel estimation. In this paper, we exploit semantic segmentation in each blurry frame to understand the scene contents and use different motion models for image regions to guide optical flow estimation. While existing pixel-wise blur models assume that the blur kernel is the same as optical flow during the exposure time, this assumption does not hold when the motion blur trajectory at a pixel is different from the estimated linear optical flow. We analyze the relationship between motion blur trajectory and optical flow, and present a novel pixel-wise non-linear kernel model to account for motion blur. The proposed blur model is based on the non-linear optical flow, which describes complex motion blur more effectively. Extensive experiments on challenging blurry videos demonstrate the proposed algorithm performs favorably against the state-of-the-art methods.

Citations (90)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.