Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improved Fixed-Rank Nyström Approximation via QR Decomposition: Practical and Theoretical Aspects (1708.03218v2)

Published 8 Aug 2017 in stat.ML, cs.CV, and cs.LG

Abstract: The Nystrom method is a popular technique that uses a small number of landmark points to compute a fixed-rank approximation of large kernel matrices that arise in machine learning problems. In practice, to ensure high quality approximations, the number of landmark points is chosen to be greater than the target rank. However, for simplicity the standard Nystrom method uses a sub-optimal procedure for rank reduction. In this paper, we examine the drawbacks of the standard Nystrom method in terms of poor performance and lack of theoretical guarantees. To address these issues, we present an efficient modification for generating improved fixed-rank Nystrom approximations. Theoretical analysis and numerical experiments are provided to demonstrate the advantages of the modified method over the standard Nystrom method. Overall, the aim of this paper is to convince researchers to use the modified method, as it has nearly identical computational complexity, is easy to code, has greatly improved accuracy in many cases, and is optimal in a sense that we make precise.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.