Papers
Topics
Authors
Recent
2000 character limit reached

Energy-efficient Analytics for Geographically Distributed Big Data (1708.03184v2)

Published 10 Aug 2017 in cs.DC

Abstract: Big data analytics on geographically distributed datasets (across data centers or clusters) has been attracting increasing interests from both academia and industry, but also significantly complicates the system and algorithm designs. In this article, we systematically investigate the geo-distributed big-data analytics framework by analyzing the fine-grained paradigm and the key design principles. We present a dynamic global manager selection algorithm (GMSA) to minimize energy consumption cost by fully exploiting the system diversities in geography and variation over time. The algorithm makes real-time decisions based on the measurable system parameters through stochastic optimization methods, while achieving the performance balances between energy cost and latency. Extensive trace-driven simulations verify the effectiveness and efficiency of the proposed algorithm. We also highlight several potential research directions that remain open and require future elaborations in analyzing geo-distributed big data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.