Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Simple Analysis of Sparse, Sign-Consistent JL (1708.02966v2)

Published 9 Aug 2017 in cs.DS, math.PR, and q-bio.NC

Abstract: Allen-Zhu, Gelashvili, Micali, and Shavit construct a sparse, sign-consistent Johnson-Lindenstrauss distribution, and prove that this distribution yields an essentially optimal dimension for the correct choice of sparsity. However, their analysis of the upper bound on the dimension and sparsity requires a complicated combinatorial graph-based argument similar to Kane and Nelson's analysis of sparse JL. We present a simple, combinatorics-free analysis of sparse, sign-consistent JL that yields the same dimension and sparsity upper bounds as the original analysis. Our analysis also yields dimension/sparsity tradeoffs, which were not previously known. As with previous proofs in this area, our analysis is based on applying Markov's inequality to the pth moment of an error term that can be expressed as a quadratic form of Rademacher variables. Interestingly, we show that, unlike in previous work in the area, the traditionally used Hanson-Wright bound is not strong enough to yield our desired result. Indeed, although the Hanson-Wright bound is known to be optimal for gaussian degree-2 chaos, it was already shown to be suboptimal for Rademachers. Surprisingly, we are able to show a simple moment bound for quadratic forms of Rademachers that is sufficiently tight to achieve our desired result, which given the ubiquity of moment and tail bounds in theoretical computer science, is likely to be of broader interest.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.