Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Extractor-Based Time-Space Lower Bounds for Learning (1708.02639v1)

Published 8 Aug 2017 in cs.LG and cs.CC

Abstract: A matrix $M: A \times X \rightarrow {-1,1}$ corresponds to the following learning problem: An unknown element $x \in X$ is chosen uniformly at random. A learner tries to learn $x$ from a stream of samples, $(a_1, b_1), (a_2, b_2) \ldots$, where for every $i$, $a_i \in A$ is chosen uniformly at random and $b_i = M(a_i,x)$. Assume that $k,\ell, r$ are such that any submatrix of $M$ of at least $2{-k} \cdot |A|$ rows and at least $2{-\ell} \cdot |X|$ columns, has a bias of at most $2{-r}$. We show that any learning algorithm for the learning problem corresponding to $M$ requires either a memory of size at least $\Omega\left(k \cdot \ell \right)$, or at least $2{\Omega(r)}$ samples. The result holds even if the learner has an exponentially small success probability (of $2{-\Omega(r)}$). In particular, this shows that for a large class of learning problems, any learning algorithm requires either a memory of size at least $\Omega\left((\log |X|) \cdot (\log |A|)\right)$ or an exponential number of samples, achieving a tight $\Omega\left((\log |X|) \cdot (\log |A|)\right)$ lower bound on the size of the memory, rather than a bound of $\Omega\left(\min\left{(\log |X|)2,(\log |A|)2\right}\right)$ obtained in previous works [R17,MM17b]. Moreover, our result implies all previous memory-samples lower bounds, as well as a number of new applications. Our proof builds on [R17] that gave a general technique for proving memory-samples lower bounds.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.