Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multilayer Spectral Graph Clustering via Convex Layer Aggregation: Theory and Algorithms (1708.02620v1)

Published 8 Aug 2017 in stat.ML and cs.SI

Abstract: Multilayer graphs are commonly used for representing different relations between entities and handling heterogeneous data processing tasks. Non-standard multilayer graph clustering methods are needed for assigning clusters to a common multilayer node set and for combining information from each layer. This paper presents a multilayer spectral graph clustering (SGC) framework that performs convex layer aggregation. Under a multilayer signal plus noise model, we provide a phase transition analysis of clustering reliability. Moreover, we use the phase transition criterion to propose a multilayer iterative model order selection algorithm (MIMOSA) for multilayer SGC, which features automated cluster assignment and layer weight adaptation, and provides statistical clustering reliability guarantees. Numerical simulations on synthetic multilayer graphs verify the phase transition analysis, and experiments on real-world multilayer graphs show that MIMOSA is competitive or better than other clustering methods.

Citations (55)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.