Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Weakly Supervised Image Annotation and Segmentation with Objects and Attributes (1708.02459v1)

Published 8 Aug 2017 in cs.CV

Abstract: We propose to model complex visual scenes using a non-parametric Bayesian model learned from weakly labelled images abundant on media sharing sites such as Flickr. Given weak image-level annotations of objects and attributes without locations or associations between them, our model aims to learn the appearance of object and attribute classes as well as their association on each object instance. Once learned, given an image, our model can be deployed to tackle a number of vision problems in a joint and coherent manner, including recognising objects in the scene (automatic object annotation), describing objects using their attributes (attribute prediction and association), and localising and delineating the objects (object detection and semantic segmentation). This is achieved by developing a novel Weakly Supervised Markov Random Field Stacked Indian Buffet Process (WS-MRF-SIBP) that models objects and attributes as latent factors and explicitly captures their correlations within and across superpixels. Extensive experiments on benchmark datasets demonstrate that our weakly supervised model significantly outperforms weakly supervised alternatives and is often comparable with existing strongly supervised models on a variety of tasks including semantic segmentation, automatic image annotation and retrieval based on object-attribute associations.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.