Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Structural patterns of information cascades and their implications for dynamics and semantics (1708.02377v1)

Published 8 Aug 2017 in cs.SI and cs.IR

Abstract: Information cascades are ubiquitous in both physical society and online social media, taking on large variations in structures, dynamics and semantics. Although the dynamics and semantics of information cascades have been studied, the structural patterns and their correlations with dynamics and semantics are largely unknown. Here we explore a large-scale dataset including $432$ million information cascades with explicit records of spreading traces, spreading behaviors, information content as well as user profiles. We find that the structural complexity of information cascades is far beyond the previous conjectures. We first propose a ten-dimensional metric to quantify the structural characteristics of information cascades, reflecting cascade size, silhouette, direction and activity aspects. We find that bimodal law governs majority of the metrics, information flows in cascades have four directions, and the self-loop number and average activity of cascades follows power law. We then analyze the high-order structural patterns of information cascades. Finally, we evaluate to what extent the structural features of information cascades can explain its dynamic patterns and semantics, and finally uncover some notable implications of structural patterns in information cascades. Our discoveries also provide a foundation for the microscopic mechanisms for information spreading, potentially leading to implications for cascade prediction and outlier detection.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube