Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

KNN Ensembles for Tweedie Regression: The Power of Multiscale Neighborhoods (1708.02122v1)

Published 29 Jul 2017 in stat.ML

Abstract: Very few K-nearest-neighbor (KNN) ensembles exist, despite the efficacy of this approach in regression, classification, and outlier detection. Those that do exist focus on bagging features, rather than varying k or bagging observations; it is unknown whether varying k or bagging observations can improve prediction. Given recent studies from topological data analysis, varying k may function like multiscale topological methods, providing stability and better prediction, as well as increased ensemble diversity. This paper explores 7 KNN ensemble algorithms combining bagged features, bagged observations, and varied k to understand how each of these contribute to model fit. Specifically, these algorithms are tested on Tweedie regression problems through simulations and 6 real datasets; results are compared to state-of-the-art machine learning models including extreme learning machines, random forest, boosted regression, and Morse-Smale regression. Results on simulations suggest gains from varying k above and beyond bagging features or samples, as well as the robustness of KNN ensembles to the curse of dimensionality. KNN regression ensembles perform favorably against state-of-the-art algorithms and dramatically improve performance over KNN regression. Further, real dataset results suggest varying k is a good strategy in general (particularly for difficult Tweedie regression problems) and that KNN regression ensembles often outperform state-of-the-art methods. These results for k-varying ensembles echo recent theoretical results in topological data analysis, where multidimensional filter functions and multiscale coverings provide stability and performance gains over single-dimensional filters and single-scale covering. This opens up the possibility of leveraging multiscale neighborhoods and multiple measures of local geometry in ensemble methods.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)