Papers
Topics
Authors
Recent
2000 character limit reached

An Information-Theoretic Optimality Principle for Deep Reinforcement Learning (1708.01867v5)

Published 6 Aug 2017 in cs.AI, cs.LG, and stat.ML

Abstract: We methodologically address the problem of Q-value overestimation in deep reinforcement learning to handle high-dimensional state spaces efficiently. By adapting concepts from information theory, we introduce an intrinsic penalty signal encouraging reduced Q-value estimates. The resultant algorithm encompasses a wide range of learning outcomes containing deep Q-networks as a special case. Different learning outcomes can be demonstrated by tuning a Lagrange multiplier accordingly. We furthermore propose a novel scheduling scheme for this Lagrange multiplier to ensure efficient and robust learning. In experiments on Atari, our algorithm outperforms other algorithms (e.g. deep and double deep Q-networks) in terms of both game-play performance and sample complexity. These results remain valid under the recently proposed dueling architecture.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.