Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parametrization and generation of geological models with generative adversarial networks (1708.01810v2)

Published 5 Aug 2017 in stat.ML, physics.comp-ph, physics.data-an, and physics.geo-ph

Abstract: One of the main challenges in the parametrization of geological models is the ability to capture complex geological structures often observed in the subsurface. In recent years, generative adversarial networks (GAN) were proposed as an efficient method for the generation and parametrization of complex data, showing state-of-the-art performances in challenging computer vision tasks such as reproducing natural images (handwritten digits, human faces, etc.). In this work, we study the application of Wasserstein GAN for the parametrization of geological models. The effectiveness of the method is assessed for uncertainty propagation tasks using several test cases involving different permeability patterns and subsurface flow problems. Results show that GANs are able to generate samples that preserve the multipoint statistical features of the geological models both visually and quantitatively. The generated samples reproduce both the geological structures and the flow statistics of the reference geology.

Citations (65)

Summary

We haven't generated a summary for this paper yet.