Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The strong ring of simplicial complexes (1708.01778v1)

Published 5 Aug 2017 in math.CO, cs.DM, and math.AT

Abstract: We define a ring R of geometric objects G generated by finite abstract simplicial complexes. To every G belongs Hodge Laplacian H as the square of the Dirac operator determining its cohomology and a unimodular connection matrix L). The sum of the matrix entries of the inverse of L is the Euler characteristic. The spectra of H as well as inductive dimension add under multiplication while the spectra of L multiply. The nullity of the Hodge of H are the Betti numbers which can now be signed. The map assigning to G its Poincare polynomial is a ring homomorphism from R the polynomials. Especially the Euler characteristic is a ring homomorphism. Also Wu characteristic produces a ring homomorphism. The Kuenneth correspondence between cohomology groups is explicit as a basis for the product can be obtained from a basis of the factors. The product in R produces the strong product for the connection graphs and leads to tensor products of connection Laplacians. The strong ring R is also a subring of the full Stanley-Reisner ring S Every element G can be visualized by its Barycentric refinement graph G1 and its connection graph G'. Gauss-Bonnet, Poincare-Hopf or the Brouwer-Lefschetz extend to the strong ring. The isomorphism of R with a subring of the strong Sabidussi ring shows that the multiplicative primes in R are the simplicial complexes and that every connected element in the strong ring has a unique prime factorization. The Sabidussi ring is dual to the Zykov ring, in which the Zykov join is the addition. The connection Laplacian of the d-dimensional lattice remains invertible in the infinite volume limit: there is a mass gap in any dimension.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube