Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A simple genome-wide association study algorithm (1708.01746v1)

Published 5 Aug 2017 in q-bio.QM and stat.ML

Abstract: A computationally simple genome-wide association study (GWAS) algorithm for estimating the main and epistatic effects of markers or single nucleotide polymorphisms (SNPs) is proposed. It is based on the intuitive assumption that changes of alleles corresponding to important SNPs in a pair of individuals lead to large difference of phenotype values of these individuals. The algorithm is based on considering pairs of individuals instead of SNPs or pairs of SNPs. The main advantage of the algorithm is that it weakly depends on the number of SNPs in a genotype matrix. It mainly depends on the number of individuals, which is typically very small in comparison with the number of SNPs. Numerical experiments with real data sets illustrate the proposed algorithm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Lev V. Utkin (42 papers)
  2. Irina L. Utkina (1 paper)

Summary

We haven't generated a summary for this paper yet.