Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Region-Based Multiscale Spatiotemporal Saliency for Video (1708.01589v1)

Published 4 Aug 2017 in cs.CV

Abstract: Detecting salient objects from a video requires exploiting both spatial and temporal knowledge included in the video. We propose a novel region-based multiscale spatiotemporal saliency detection method for videos, where static features and dynamic features computed from the low and middle levels are combined together. Our method utilizes such combined features spatially over each frame and, at the same time, temporally across frames using consistency between consecutive frames. Saliency cues in our method are analyzed through a multiscale segmentation model, and fused across scale levels, yielding to exploring regions efficiently. An adaptive temporal window using motion information is also developed to combine saliency values of consecutive frames in order to keep temporal consistency across frames. Performance evaluation on several popular benchmark datasets validates that our method outperforms existing state-of-the-arts.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.