Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Latent Variable Model for Two-Dimensional Canonical Correlation Analysis and its Variational Inference (1708.01519v1)

Published 4 Aug 2017 in cs.CV, cs.LG, and stat.ML

Abstract: Describing the dimension reduction (DR) techniques by means of probabilistic models has recently been given special attention. Probabilistic models, in addition to a better interpretability of the DR methods, provide a framework for further extensions of such algorithms. One of the new approaches to the probabilistic DR methods is to preserving the internal structure of data. It is meant that it is not necessary that the data first be converted from the matrix or tensor format to the vector format in the process of dimensionality reduction. In this paper, a latent variable model for matrix-variate data for canonical correlation analysis (CCA) is proposed. Since in general there is not any analytical maximum likelihood solution for this model, we present two approaches for learning the parameters. The proposed methods are evaluated using the synthetic data in terms of convergence and quality of mappings. Also, real data set is employed for assessing the proposed methods with several probabilistic and none-probabilistic CCA based approaches. The results confirm the superiority of the proposed methods with respect to the competing algorithms. Moreover, this model can be considered as a framework for further extensions.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.