Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

ACTS in Need: Automatic Configuration Tuning with Scalability Guarantees (1708.01349v2)

Published 4 Aug 2017 in cs.DC

Abstract: To support the variety of Big Data use cases, many Big Data related systems expose a large number of user-specifiable configuration parameters. Highlighted in our experiments, a MySQL deployment with well-tuned configuration parameters achieves a peak throughput as 12 times much as one with the default setting. However, finding the best setting for the tens or hundreds of configuration parameters is mission impossible for ordinary users. Worse still, many Big Data applications require the support of multiple systems co-deployed in the same cluster. As these co-deployed systems can interact to affect the overall performance, they must be tuned together. Automatic configuration tuning with scalability guarantees (ACTS) is in need to help system users. Solutions to ACTS must scale to various systems, workloads, deployments, parameters and resource limits. Proposing and implementing an ACTS solution, we demonstrate that ACTS can benefit users not only in improving system performance and resource utilization, but also in saving costs and enabling fairer benchmarking.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.