Papers
Topics
Authors
Recent
2000 character limit reached

Recursive Whitening Transformation for Speaker Recognition on Language Mismatched Condition (1708.01232v2)

Published 3 Aug 2017 in cs.SD

Abstract: Recently in speaker recognition, performance degradation due to the channel domain mismatched condition has been actively addressed. However, the mismatches arising from language is yet to be sufficiently addressed. This paper proposes an approach which employs recursive whitening transformation to mitigate the language mismatched condition. The proposed method is based on the multiple whitening transformation, which is intended to remove un-whitened residual components in the dataset associated with i-vector length normalization. The experiments were conducted on the Speaker Recognition Evaluation 2016 trials of which the task is non-English speaker recognition using development dataset consist of both a large scale out-of-domain (English) dataset and an extremely low-quantity in-domain (non-English) dataset. For performance comparison, we develop a state-of- the-art system using deep neural network and bottleneck feature, which is based on a phonetically aware model. From the experimental results, along with other prior studies, effectiveness of the proposed method on language mismatched condition is validated.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube