Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Sparse Completely Positive Relaxation of the Modularity Maximization for Community Detection (1708.01072v1)

Published 3 Aug 2017 in math.OC and cs.SI

Abstract: In this paper, we consider the community detection problem under either the stochastic block model (SBM) assumption or the degree-correlated stochastic block model (DCSBM) assumption. The modularity maximization formulation for the community detection problem is NP-hard in general. In this paper, we propose a sparse and low-rank completely positive relaxation for the modularity maximization problem, we then develop an efficient row-by-row (RBR) type block coordinate descent (BCD) algorithm to solve the relaxation and prove an $\mathcal{O}(1/\sqrt{N})$ convergence rate to a stationary point where $N$ is the number of iterations. A fast rounding scheme is constructed to retrieve the community structure from the solution. Non-asymptotic high probability bounds on the misclassification rate are established to justify our approach. We further develop an asynchronous parallel RBR algorithm to speed up the convergence. Extensive numerical experiments on both synthetic and real world networks show that the proposed approach enjoys advantages in both clustering accuracy and numerical efficiency. Our numerical results indicate that the newly proposed method is a quite competitive alternative for community detection on sparse networks with over 50 million nodes.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.