Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reader-Aware Multi-Document Summarization: An Enhanced Model and The First Dataset (1708.01065v1)

Published 3 Aug 2017 in cs.CL and cs.AI

Abstract: We investigate the problem of reader-aware multi-document summarization (RA-MDS) and introduce a new dataset for this problem. To tackle RA-MDS, we extend a variational auto-encodes (VAEs) based MDS framework by jointly considering news documents and reader comments. To conduct evaluation for summarization performance, we prepare a new dataset. We describe the methods for data collection, aspect annotation, and summary writing as well as scrutinizing by experts. Experimental results show that reader comments can improve the summarization performance, which also demonstrates the usefulness of the proposed dataset. The annotated dataset for RA-MDS is available online.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.