Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Improved Time-Space Trade-offs for Computing Voronoi Diagrams (1708.00814v3)

Published 2 Aug 2017 in cs.CG

Abstract: Let $P$ be a planar set of $n$ sites in general position. For $k\in{1,\dots,n-1}$, the Voronoi diagram of order $k$ for $P$ is obtained by subdividing the plane into cells such that points in the same cell have the same set of nearest $k$ neighbors in $P$. The (nearest site) Voronoi diagram (NVD) and the farthest site Voronoi diagram (FVD) are the particular cases of $k=1$ and $k=n-1$, respectively. For any given $K\in{1,\dots,n-1}$, the family of all higher-order Voronoi diagrams of order $k=1,\dots,K$ for $P$ can be computed in total time $O(nK2+ n\log n)$ using $O(K2(n-K))$ space [Aggarwal et al., DCG'89; Lee, TC'82]. Moreover, NVD and FVD for $P$ can be computed in $O(n\log n)$ time using $O(n)$ space [Preparata, Shamos, Springer'85]. For $s\in{1,\dots,n}$, an $s$-workspace algorithm has random access to a read-only array with the sites of $P$ in arbitrary order. Additionally, the algorithm may use $O(s)$ words, of $\Theta(\log n)$ bits each, for reading and writing intermediate data. The output can be written only once and cannot be accessed or modified afterwards. We describe a deterministic $s$-workspace algorithm for computing NVD and FVD for $P$ that runs in $O((n2/s)\log s)$ time. Moreover, we generalize our $s$-workspace algorithm so that for any given $K\in O(\sqrt{s})$, we compute the family of all higher-order Voronoi diagrams of order $k=1,\dots,K$ for $P$ in total expected time $O (\frac{n2 K5}{s}(\log s+K2{O(\log* K)}))$ or in total deterministic time $O(\frac{n2 K5}{s}(\log s+K\log K))$. Previously, for Voronoi diagrams, the only known $s$-workspace algorithm runs in expected time $O\bigl((n2/s)\log s+n\log s\log* s)$ [Korman et al., WADS'15] and only works for NVD (i.e., $k=1$). Unlike the previous algorithm, our new method is very simple and does not rely on advanced data structures or random sampling techniques.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube