Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On $w$-mixtures: Finite convex combinations of prescribed component distributions (1708.00568v3)

Published 2 Aug 2017 in cs.LG

Abstract: We consider the space of $w$-mixtures which is defined as the set of finite statistical mixtures sharing the same prescribed component distributions closed under convex combinations. The information geometry induced by the Bregman generator set to the Shannon negentropy on this space yields a dually flat space called the mixture family manifold. We show how the Kullback-Leibler (KL) divergence can be recovered from the corresponding Bregman divergence for the negentropy generator: That is, the KL divergence between two $w$-mixtures amounts to a Bregman Divergence (BD) induced by the Shannon negentropy generator. Thus the KL divergence between two Gaussian Mixture Models (GMMs) sharing the same Gaussian components is equivalent to a Bregman divergence. This KL-BD equivalence on a mixture family manifold implies that we can perform optimal KL-averaging aggregation of $w$-mixtures without information loss. More generally, we prove that the statistical skew Jensen-Shannon divergence between $w$-mixtures is equivalent to a skew Jensen divergence between their corresponding parameters. Finally, we state several properties, divergence identities, and inequalities relating to $w$-mixtures.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.