Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning the kernel matrix by resampling (1708.00365v1)

Published 1 Aug 2017 in cs.LG

Abstract: In this abstract paper, we introduce a new kernel learning method by a nonparametric density estimator. The estimator consists of a group of k-centroids clusterings. Each clustering randomly selects data points with randomly selected features as its centroids, and learns a one-hot encoder by one-nearest-neighbor optimization. The estimator generates a sparse representation for each data point. Then, we construct a nonlinear kernel matrix from the sparse representation of data. One major advantage of the proposed kernel method is that it is relatively insensitive to its free parameters, and therefore, it can produce reasonable results without parameter tuning. Another advantage is that it is simple. We conjecture that the proposed method can find its applications in many learning tasks or methods where sparse representation or kernel matrix is explored. In this preliminary study, we have applied the kernel matrix to spectral clustering. Our experimental results demonstrate that the kernel generated by the proposed method outperforms the well-tuned Gaussian RBF kernel. This abstract paper is used to protect the idea, full versions will be updated later.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)