Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Distributed Approximation of Maximum Independent Set and Maximum Matching (1708.00276v1)

Published 1 Aug 2017 in cs.DC and cs.DS

Abstract: We present a simple distributed $\Delta$-approximation algorithm for maximum weight independent set (MaxIS) in the $\mathsf{CONGEST}$ model which completes in $O(\texttt{MIS}(G)\cdot \log W)$ rounds, where $\Delta$ is the maximum degree, $\texttt{MIS}(G)$ is the number of rounds needed to compute a maximal independent set (MIS) on $G$, and $W$ is the maximum weight of a node. %Whether our algorithm is randomized or deterministic depends on the \texttt{MIS} algorithm used as a black-box. Plugging in the best known algorithm for MIS gives a randomized solution in $O(\log n \log W)$ rounds, where $n$ is the number of nodes. We also present a deterministic $O(\Delta +\log* n)$-round algorithm based on coloring. We then show how to use our MaxIS approximation algorithms to compute a $2$-approximation for maximum weight matching without incurring any additional round penalty in the $\mathsf{CONGEST}$ model. We use a known reduction for simulating algorithms on the line graph while incurring congestion, but we show our algorithm is part of a broad family of \emph{local aggregation algorithms} for which we describe a mechanism that allows the simulation to run in the $\mathsf{CONGEST}$ model without an additional overhead. Next, we show that for maximum weight matching, relaxing the approximation factor to ($2+\varepsilon$) allows us to devise a distributed algorithm requiring $O(\frac{\log \Delta}{\log\log\Delta})$ rounds for any constant $\varepsilon>0$. For the unweighted case, we can even obtain a $(1+\varepsilon)$-approximation in this number of rounds. These algorithms are the first to achieve the provably optimal round complexity with respect to dependency on $\Delta$.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.