Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Sparsification of Recurrent Neural Networks (1708.00077v1)

Published 31 Jul 2017 in stat.ML, cs.CL, and cs.LG

Abstract: Recurrent neural networks show state-of-the-art results in many text analysis tasks but often require a lot of memory to store their weights. Recently proposed Sparse Variational Dropout eliminates the majority of the weights in a feed-forward neural network without significant loss of quality. We apply this technique to sparsify recurrent neural networks. To account for recurrent specifics we also rely on Binary Variational Dropout for RNN. We report 99.5% sparsity level on sentiment analysis task without a quality drop and up to 87% sparsity level on language modeling task with slight loss of accuracy.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.