Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Bearing fault diagnosis under varying working condition based on domain adaptation (1707.09890v1)

Published 31 Jul 2017 in cs.SD

Abstract: Traditional intelligent fault diagnosis of rolling bearings work well only under a common assumption that the labeled training data (source domain) and unlabeled testing data (target domain) are drawn from the same distribution. When the distribution changes, most fault diagnosis models need to be rebuilt from scratch using newly recollected labeled training data. However, it is expensive or impossible to annotate huge amount of training data to rebuild such new model. Meanwhile, large amounts of labeled training data have not been fully utilized yet, which is apparently a waste of resources. As one of the important research directions of transfer learning, domain adaptation (DA) typically aims at minimizing the differences between distributions of different domains in order to minimize the cross-domain prediction error by taking full advantage of information coming from both source and target domains. In this paper, we present one of the first studies on unsupervised DA in the field of fault diagnosis of rolling bearings under varying working conditions and a novel diagnosis strategy based on unsupervised DA using subspace alignment (SA) is proposed. After processed by unsupervised DA with SA, the distributions of training data and testing data become close and the classifier trained on training data can be used to classify the testing data. Experimental results on the 60 domain adaptation diagnosis problems under varying working condition in Case Western Reserve benchmark data and 12 domain adaptation diagnosis problems under varying working conditions in our new data are given to demonstrate the effectiveness of the proposed method. The proposed methods can effectively distinguish not only bearing faults categories but also fault severities.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.