Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A New Classification Approach for Robotic Surgical Tasks Recognition (1707.09849v1)

Published 12 Jul 2017 in cs.RO

Abstract: Automatic recognition and classification of tasks in robotic surgery is an important stepping stone toward automated surgery and surgical training. Recently, technical breakthroughs in gathering data make data-driven model development possible. In this paper, we propose a framework for high-level robotic surgery task recognition using motion data. We present a novel classification technique that is used to classify three important surgical tasks through quantitative analyses of motion: knot tying, needle passing and suturing. The proposed technique integrates state-of-the-art data mining and time series analysis methods. The first step of this framework consists of developing a time series distance-based similarity measure using derivative dynamic time warping (DDTW). The distance-weighted k-nearest neighbor algorithm was then used to classify task instances. The framework was validated using an extensive dataset. Our results demonstrate the strength of the proposed framework in recognizing fundamental robotic surgery tasks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.