Papers
Topics
Authors
Recent
2000 character limit reached

Taming Non-stationary Bandits: A Bayesian Approach (1707.09727v1)

Published 31 Jul 2017 in stat.ML and cs.LG

Abstract: We consider the multi armed bandit problem in non-stationary environments. Based on the Bayesian method, we propose a variant of Thompson Sampling which can be used in both rested and restless bandit scenarios. Applying discounting to the parameters of prior distribution, we describe a way to systematically reduce the effect of past observations. Further, we derive the exact expression for the probability of picking sub-optimal arms. By increasing the exploitative value of Bayes' samples, we also provide an optimistic version of the algorithm. Extensive empirical analysis is conducted under various scenarios to validate the utility of proposed algorithms. A comparison study with various state-of-the-arm algorithms is also included.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.