Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Joint Named Entity Recognition and Stance Detection in Tweets (1707.09611v1)

Published 30 Jul 2017 in cs.CL

Abstract: Named entity recognition (NER) is a well-established task of information extraction which has been studied for decades. More recently, studies reporting NER experiments on social media texts have emerged. On the other hand, stance detection is a considerably new research topic usually considered within the scope of sentiment analysis. Stance detection studies are mostly applied to texts of online debates where the stance of the text owner for a particular target, either explicitly or implicitly mentioned in text, is explored. In this study, we investigate the possible contribution of named entities to the stance detection task in tweets. We report the evaluation results of NER experiments as well as that of the subsequent stance detection experiments using named entities, on a publicly-available stance-annotated data set of tweets. Our results indicate that named entities obtained with a high-performance NER system can contribute to stance detection performance on tweets.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)