Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bilingual Document Alignment with Latent Semantic Indexing (1707.09443v1)

Published 29 Jul 2017 in cs.CL

Abstract: We apply cross-lingual Latent Semantic Indexing to the Bilingual Document Alignment Task at WMT16. Reduced-rank singular value decomposition of a bilingual term-document matrix derived from known English/French page pairs in the training data allows us to map monolingual documents into a joint semantic space. Two variants of cosine similarity between the vectors that place each document into the joint semantic space are combined with a measure of string similarity between corresponding URLs to produce 1:1 alignments of English/French web pages in a variety of domains. The system achieves a recall of ca. 88% if no in-domain data is used for building the latent semantic model, and 93% if such data is included. Analysing the system's errors on the training data, we argue that evaluating aligner performance based on exact URL matches under-estimates their true performance and propose an alternative that is able to account for duplicates and near-duplicates in the underlying data.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)