Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bipartite spanning sub(di)graphs induced by 2-partitions (1707.09400v1)

Published 28 Jul 2017 in cs.DM and math.CO

Abstract: For a given $2$-partition $(V_1,V_2)$ of the vertices of a (di)graph $G$, we study properties of the spanning bipartite subdigraph $B_G(V_1,V_2)$ of $G$ induced by those arcs/edges that have one end in each $V_i$. We determine, for all pairs of non-negative integers $k_1,k_2$, the complexity of deciding whether $G$ has a 2-partition $(V_1,V_2)$ such that each vertex in $V_i$ has at least $k_i$ (out-)neighbours in $V_{3-i}$. We prove that it is ${\cal NP}$-complete to decide whether a digraph $D$ has a 2-partition $(V_1,V_2)$ such that each vertex in $V_1$ has an out-neighbour in $V_2$ and each vertex in $V_2$ has an in-neighbour in $V_1$. The problem becomes polynomially solvable if we require $D$ to be strongly connected. We give a characterisation, based on the so-called strong component digraph of a non-strong digraph of the structure of ${\cal NP}$-complete instances in terms of their strong component digraph. When we want higher in-degree or out-degree to/from the other set the problem becomes ${\cal NP}$-complete even for strong digraphs. A further result is that it is ${\cal NP}$-complete to decide whether a given digraph $D$ has a $2$-partition $(V_1,V_2)$ such that $B_D(V_1,V_2)$ is strongly connected. This holds even if we require the input to be a highly connected eulerian digraph.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube