Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Out-degree reducing partitions of digraphs (1707.09349v1)

Published 28 Jul 2017 in cs.DM and math.CO

Abstract: Let $k$ be a fixed integer. We determine the complexity of finding a $p$-partition $(V_1, \dots, V_p)$ of the vertex set of a given digraph such that the maximum out-degree of each of the digraphs induced by $V_i$, ($1\leq i\leq p$) is at least $k$ smaller than the maximum out-degree of $D$. We show that this problem is polynomial-time solvable when $p\geq 2k$ and ${\cal NP}$-complete otherwise. The result for $k=1$ and $p=2$ answers a question posed in \cite{bangTCS636}. We also determine, for all fixed non-negative integers $k_1,k_2,p$, the complexity of deciding whether a given digraph of maximum out-degree $p$ has a $2$-partition $(V_1,V_2)$ such that the digraph induced by $V_i$ has maximum out-degree at most $k_i$ for $i\in [2]$. It follows from this characterization that the problem of deciding whether a digraph has a 2-partition $(V_1,V_2)$ such that each vertex $v\in V_i$ has at least as many neighbours in the set $V_{3-i}$ as in $V_i$, for $i=1,2$ is ${\cal NP}$-complete. This solves a problem from \cite{kreutzerEJC24} on majority colourings.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.