Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Early Fusion Strategy for Entity-Relationship Retrieval (1707.09075v2)

Published 27 Jul 2017 in cs.IR

Abstract: We address the task of entity-relationship (E-R) retrieval, i.e, given a query characterizing types of two or more entities and relationships between them, retrieve the relevant tuples of related entities. Answering E-R queries requires gathering and joining evidence from multiple unstructured documents. In this work, we consider entity and relationships of any type, i.e, characterized by context terms instead of pre-defined types or relationships. We propose a novel IR-centric approach for E-R retrieval, that builds on the basic early fusion design pattern for object retrieval, to provide extensible entity-relationship representations, suitable for complex, multi-relationships queries. We performed experiments with Wikipedia articles as entity representations combined with relationships extracted from ClueWeb-09-B with FACC1 entity linking. We obtained promising results using 3 different query collections comprising 469 E-R queries.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.