Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simultaneous active parameter estimation and control using sampling-based Bayesian reinforcement learning (1707.09055v1)

Published 27 Jul 2017 in cs.SY

Abstract: Robots performing manipulation tasks must operate under uncertainty about both their pose and the dynamics of the system. In order to remain robust to modeling error and shifts in payload dynamics, agents must simultaneously perform estimation and control tasks. However, the optimal estimation actions are often not the optimal actions for accomplishing the control tasks, and thus agents trade between exploration and exploitation. This work frames the problem as a Bayes-adaptive Markov decision process and solves it online using Monte Carlo tree search and an extended Kalman filter to handle Gaussian process noise and parameter uncertainty in a continuous space. MCTS selects control actions to reduce model uncertainty and reach the goal state nearly optimally. Certainty equivalent model predictive control is used as a benchmark to compare performance in simulations with varying process noise and parameter uncertainty.

Summary

We haven't generated a summary for this paper yet.